
Survey and Comparison of

Open Source Time Series Databases

Andreas Bader1, Oliver Kopp2, Michael Falkenthal3

Abstract: Time series data, i.e., data consisting of a series of timestamps and corresponding values, is
a special type of data occurring in settings such as “Smart Grids”. Extended analysis techniques called
for a new type of databases: Time Series Databases (TSDBs), which are specialized for storing and
querying time series data. In this work, we aim for a complete list of all available TSDBs and a feature
list of popular open source TSDBs. The systematic search resulted in 83 TSDBs. The twelve most
prominent found open source TSDBs are compared. Therefore, 27 criteria in six groups are defined: (i)
Distribution/Clusterability, (ii) Functions, (iii) Tags, Continuous Calculation, and Long-term Storage,
(iv) Granularity, (v) Interfaces and Extensibility, (vi) Support and License.

Keywords: Time Series Databases, Survey, Comparison

1 Introduction and Background

The importance of sensors has been growing in the last years. Thereby, IoT technologies

gained access to industrial environments to enable intensive metering of production steps,

whole manufacturing processes, and further parameters. One key challenge of these

endeavors is to efficiently store and analyze huge sets of metering data from many different

sensors, which are typically present in the form of time series data. These principles are

currently also applied to energy grids, where increasing amounts of dynamic and flexible

power generation units, such as solar panels and thermal power stations, respectively, along

with energy storages, such as batteries or pumped storage hydro power stations, require to

intensively meter the parameters of the energy grid [Ko15]. At this, metered data is analyzed

to smartly control the energy grid with respect to balancing volatile amounts of generated

and consumed electricity, which also results in changes of the existing energy market [BF12].

To conceive the volume of time series data that may be collected in such scenarios, the

equipping of a smaller city with smart meters can lead up to 200,000 million voltage

measurements each month—which all have to be stored and processed [St15]. Real-world

metering is also done in the context of our BMWi-funded project NEMAR (03ET4018),

where Time Series Databases (TSDBs) play a crucial role to develop a Decentralized Market

Agent (DMA) [Th15]. The goal of a DMA is to form a new role in the energy market to

gain a global price and energy transfer optimum. This should be done efficiently, but also

the TCO for the infrastructure should reasonable.

To handle such amounts of data, it is necessary to scale the Database Management System

(DBMS) accordingly, which means distribution across several nodes with the possibility to

1 University of Stuttgart, IPVS, Universitätsstr. 38, Stuttgart, Germany, andreas.bader@ipvs.uni-stuttgart.de
2 University of Stuttgart, IPVS, Universitätsstr. 38, Stuttgart, Germany, oliver.kopp@ipvs.uni-stuttgart.de
3 University of Stuttgart, IAAS, Universitätsstr. 38, Stuttgart, Germany, michael.falkenthal@iaas.uni-stuttgart.de

B. Mitschang et al. (Hrsg.): BTW 2017 Ű Workshopband,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 249

andreas.bader@ipvs.uni-stuttgart.de
oliver.kopp@ipvs.uni-stuttgart.de
michael.falkenthal@iaas.uni-stuttgart.de


increase further when the city grows is inevitable. There are different views on the question

if traditional Relational Database Management Systems (RDBMS) can handle such amounts

of data. On the one hand, distributing writes in a relational model, whilst keeping full

consistency and the same level of query latencies, is not easily possible [PA13]. On the other

hand, VividCortex, a SaaS platform for database monitoring, uses MySQL Community

Server [Or16a], a traditional RDBMS, in combination with InnoDB as storage subsystem

to store 332,000 values per second while running on three Amazon Web Services (AWS)

Elastic Compute Cloud (EC2) servers [Vi14]. Most of the used queries are Insertions [Sc14]

and basic SQL queries like SUM queries [Sc15]. To ingest into MySQL with that ingest rate,

several trade-offs are required [Sc15]: 1) Performing batch-wise ingestion into vectors4 that

are stored as delta values and grouped by a clustered primary key5, 2) due to the clustered

primary key, performing ad-hoc SQL queries is not possible, instead a time series service

had to be used for querying, 3) while building the cluster, it must be decided and manually

implemented how data is sharded, grouped, and how indexes are created. Scalable RDBMS

which use small-scope operations and transactions are trying to achieve better scalability

and performance than traditional RDBMS [Ca11]. This shows that, with enough effort

and by considering the specific use case at hand, RDBMS can be used for storing time

series data. However, it is not clear if this is still possible if the queries are more complex

or algorithmic.

NoSQL DBMS provide a solution with more possibilities for distribution by weakening

relations and consistencies [Gr13]. Knowing that sensor data has a timestamp attached to

it, a specific type of NoSQL DBMS for that type of data arose: Time Series Databases

(TSDBs). This new type provides the scalability to store huge amounts of time series data,

ingested with an high ingest rate, and perform SCAN queries on it [Te14]. The boundaries

between NoSQL DBMS and TSDBs are fluent, as there exists no precisely defined boundary

between them.

However, since a vast amount of TSDB solutions have emerged in the last years, a clear

overview is missing as of today. Especially the fact that TSDBs (i) are capable of diverse

functionalities regarding operations on time series data, while (ii) building upon completely

different technologies motivates to establish a set of criteria in order to make them

objectively comparable. Such criteria can be used for architectural decisions, which may

lead to other results than a plain performance comparison [Zi15].

Therefore, the contribution of this paper is threefold: (i) the main contribution is to present a

survey and comparison on existing TSDB solutions, which (ii) builds upon a comprehensive

list of found TSDBs, and (iii) a set of measurable comparison criteria. This survey presents

a popularity ranking of all found TSDBs whereas the feature comparison regards the subset

consisting of popular open source TSDBs and can be used as a basis for deciding which

open source TSDBs to select for specific use cases at hand.

The remainder of this paper is structured as follows: Sect. 2 defines what a TSDB is and

how TSDBs can be grouped. Sect. 3 presents related work. Sect. 4 defines the comparison

criteria. Sect. 5 presents the search process and the found TSDBs. Sect. 6 introduces the

4 Vectors help to hold multiple values per row, so that there is not one row for each second (using a distance of one

second between values) [Sc15].

5 A clustered primary key of VividCortex consists of the host name, the time series name, and a timestamp [Sc15].

250 Andreas Bader, Oliver Kopp, Michael Falkenthal



chosen TSDBs more detailed. The main contribution of this paper, the feature comparison,

is done in Sect. 7. Sect. 8 concludes and describes future work.

2 Definitions

For comparing TSDBs, it is necessary to define which databases belong to this group as

the term “TSDB” is not consistently defined or used. Traditionally, a Database System

(DBS) consists of a Database (DB) and a DBMS. While “DB” describes a collection of data,

“DBMS” describes the software that is used to define, process, administrate, and analyze

the data in a “DB” [Th01]. Most literature uses the term “DBMS” (like RDBMS) instead of

“DBS”. Therefore TSDB is mostly used in the meaning of “time series database management

system”. In this paper, DBMS, RDBMS, and TSDB will be used in this non-accurate way.

For this paper, a DBMS that can (i) store a row of data that consists of timestamp, value,

and optional tags, (ii) store multiple rows of time series data grouped together (e. g., in a

time series), (iii) can query for rows of data, and (iv) can contain a timestamp or a time

range in a query is called TSDB. This definition is more precise than defining a TSDB as a

database that can contain historical data besides current data [DDL14]. This means that the

“time series”-character of the DBMS must inherently exist, it must be possible to do queries

by timestamps and time ranges. Storing time series data in a RDBMS can be done in two

ways: timestamp-sorted or series-sorted. Depending on the indexes and queries used, this

can impact performance of the queries [Sc15].

Queries of TSDBs Nine different queries will be used for comparison and explanation:

Insertion (INS), Updating (UPD), Reading (READ), Scanning (SCAN), Averaging (AVG),

Summarization (SUM), Counting (CNT), Deletion (DEL), Maximization (MAX), and

Minimization (MIN). The resulting data inside a TSDB of one single INS, that was

successfully executed, is called row (of time series data). A row of time series data consists

of a timestamp, a value (usually floating point with double or single precision), and optional

tag names and values. A TSDB can store several time series, whereby each time series

consists of a name and several rows of time series data. A time series is used to group

rows of time series data together on a higher level than tags, comparable to a table in

traditional RDBMS (e. g., “voltage measurements” as name of the time series, whereby

the tag names and values define from which sensor in which building the measurement

came). A timestamp expresses a specific point in time, usually in milliseconds starting from

1970-01-01. A granularity defines the smallest possible distance between two timestamps

that can be stored. The granularity used to store data and the granularity used for querying

can be different. A time range describes a period of time between two timestamps and can

also be zero. A tag consists of a tag name and a tag value (both usually alphanumeric). A

tag can be used to group rows together (e. g., each row consists of sensor values and a tag is

named “room” and the tag values are room numbers). Data can be aggregated using the

aggregation queries AVG, SUM, CNT, MAX, and MIN. These queries can also be used to

group the results together in time ranges, which are also called “buckets” (e. g., querying

the maximum value of each day in a year).

The queries are defined as follows: INS is a query that inserts one single row into a DBMS.

UPD updates one or more rows with a specific timestamp. READ reads one or more rows

Survey and Comparison of Open Source Time Series Databases 251



with a specific timestamp or in the smallest time range possible. SCAN reads one or more

rows that are in a specific time range. AVG calculates the average over several values in a

specific time range. SUM summarizes several values in a specific time range. CNT counts

the amount of existing values in a specific time range. DEL deletes one or more rows with a

specific timestamp or in a specific time range. MAX and MIN search for the maximum,

respective minimum, value of several values in a specific time range.

Grouping of TSDBs Existing TSDBs can be subdivided into four groups. The first

group exists of TSDBs that depend on an already existing DBMS (e. g., Cassandra, HBase,

CouchDB, MySQL) to store the time series data. If another DBMS is only required to store

meta data, the TSDB is not in this group. In the second group are TSDBs that can store

time series data completely independent of other DBMS despite using DBMS for storing

meta data or other additional information. RDBMS are not in this group, even if they do

not require other DBMS. The third group encloses RDBMS that can store time series data.

Independent from their requirements on other DBMS, RDBMS cannot be in group 1 or 2.

As last group, Proprietary contains all commercially or freely available TSDBs that are not

open source. Independent from their requirements on other DBMS and from their type,

proprietary DBMS cannot be in group 1, 2, or 3.

3 Related Work

Previous publications are motivated by releases of new TSDBs or the search for a DBMS

for processing or storing time series data for a specific scenario. Many of these publications

include a performance comparison. The two most prominent performance comparison

publication are described here, an overview on other related work is presented by Bader

[Ba16]. Lately, an overview over 19 existing TSDBs was published on the internet [Ac16a],

which is the latest and completest overview that could be found on existing TSDBs.

Wlodarczyk [Wl12] compares four solutions for storing and processing time series data.

The results are that OpenTSDB is the best solution if advanced analysis is needed, and that

TempoIQ (formerly TempoDB) can be a better choice if a hosted solution is desired. No

benchmark results are provided, only a feature comparison is done.

Deri et al. [DMF12] present tsdb as a compressed TSDB that handles large time series better

than three existing solutions. They discovered OpenTSDB as only available open source

TSDB, but do not compare it to tsdb. The reason is the architecture of OpenTSDB, which is

not suitable for their setup. MySQL, RRDtool, and Redis are compared against tsdb with the

result that the append/search performance of tsdb is best out of the four compared DBMS.

Pungilă et al. [PFA09] tried to find a fitting database for a set of households with smart

meters. For reaching their goal, they compared three RDBMS (PostgreSQL, MySQL,

SQLite3), one TSDB (IBM Informix Ű community edition with TimeSeries DataBlade

module), and three NoSQL DBMS (Oracle BerkeleyDB, Hypertable, MonetDB) in two

scenarios. The conclusion is, that if the data and therefore the queries are based on a key

like client identifier, sensor identifier, or timestamp, then some DBMS result in increased

performance. The performance is logarithmically decreased for these DBMS when using

a combination of tags. Two of the compared DBMS are interesting for their scenario,

252 Andreas Bader, Oliver Kopp, Michael Falkenthal



depending whether the focus lies on INS queries, READ queries, or both. Hypertable is the

best choice if the focus lies on the highest rate of executed INS queries in combination with

a worse SCAN performance. BerkeleyDB, which has a lower rate of executed INS queries

but executes more SCAN queries, is the second best choice.

Acreman [Ac16a] compares 19 TSDBs (DalmatinerDB, InfluxDB, Prometheus, Riak TS,

OpenTSDB, KairosDB, Elasticsearch, Druid, Blueflood, Graphite (whisper), Atlas, Chronix

Server, Hawkular, Warp 10 (distributed), Heroic, Akumuli, BtrDB, MetricTank, Tgres)

including a performance comparison. For measuring performance, a two node setup

generated about 2.4 to 3.7 million INS queries per second on average [Ac16b]. As a result,

DalmatinerDB can execute two to three times as much INS queries queries than other TSDBs

in this comparison, followed by InfluxDB and Prometheus. Although Steven Acreman is the

Co-Founder of Dataloop, a company that is connected to DalmatinerDB, he tries to provide

as much transparency as possible by releasing the benchmark [Ac16b].

As a summary it can be concluded that most of the existing publications focus on performance

comparison rather than doing a feature comparison. Furthermore, the conclusion of the

presented work is that there is not one single database that suits every use case. This paper

closes this gap by presenting a systematic search for TSDBs resulting in 83 found TSDBs

and a feature comparison of 12 found open source TSDBs that are chosen by popularity.

4 Comparison Criteria

The comparison criteria are grouped into six groups that will be explained in the rest of

this section. The criteria are derived from requirements on the time series database in the

context of the NEMAR project [Th15].

Criteria Group 1: Distribution/Clusterability High Availability (HA), scalability, and

load balancing features are compared in this group. HA gives the possibility to compensate

unexpected node failures and network partitioning. To compensate means that a query must

be answered under the mentioned circumstances, but it is not expected that the given answer

is always consistent. It is expected that the DBMS uses eventual consistency at least, but

since some time series databases do not give any explicit consistency guarantee or depend

on DBMS that have configurable consistency guarantees, consistency levels are not further

considered. It is also expected that a client needs to know more than one entry point (e. g.,

IP address) to compensate a node failure of an entry node. Scalability is the ability to

increase storage or performance by adding more nodes. The ability must exist in the server

part of the TSDB, otherwise adding a second TSDB and giving the client application the

possibility to use two TSDBs in parallel for its queries would also result in scalability and

a increased performance. Load balancing is the possibility to equally distribute queries

across nodes in a TSDB, so that the workload of each node has just about the same level. If

a TSDB uses another DBMS, it is also fulfilled if only the DBMS or the TSDB or both have

these features.

Criteria Group 2: Functions The availability of INS, UPD, READ, SCAN, AVG, SUM,

CNT, DEL, MAX, and MIN functions is compared in this group. Sect. 2 presents an

explanation of these queries. All of these functions are specific to time series. There are

Survey and Comparison of Open Source Time Series Databases 253



more complex queries like changing the granularity, grouping by time spans, or performing

autoregressive integrated moving average (ARIMA) time series analysis, but due to the

experiences in the NEMAR project [Th15] and the fact that VividCortex (see Sect. 1) also

uses mostly INS queries [Sc14] and other simpler query types (such as SUM queries) in

their setup [Sc15], simple query types are considered sufficient for a comparison.

Criteria Group 3: Tags, Continuous Calculation, Long-term Storage, and Matrix

Time Series Continuous calculation, tags, long-term storage, and the support of matrix

time series are compared this group. Continuous calculation means that a TSDB, having

this feature, can continuously calculate functions based on the input data and stores the

results. An example is the calculation of an average per hour. It is also checked if tags are

available as these are needed to differentiate different sources (e. g., different sensors). A

solution for long-term storage is needed for huge amounts of data, as it is challenging to

store every value in full resolution over a longer period, considering the city from Sect. 1

with 360,000 values per second (on a full rollout) [St15] as an example. Solutions could

range from throwing away old data to storing aggregated values of old data (e. g., storing

only an average over a minute instead of values for every millisecond). Solutions that are

running outside the TSDB are not considered (e. g., a periodic process that runs queries

to aggregate and destroy old data). Most TSDBs support time series with one timestamp

per value, so called vector time series. If, for example, forecasts (e. g., weather forecast)

are stored in a TSDB, time series that support two or more timestamps per value (more

than one time dimension) are needed, because a value then has two timestamps (e. g., a

timestamp on which the forecast was created and a timestamp for which the forecast was

made). These time series are called matrix time series. Solutions that can be implemented

with other existing functions (e. g., tags) for storing matrix time series are not considered.

The available time domain function for the first timestamp must be available for the second

timestamp as well.

Criteria Group 4: Granularity Granularity, downsampling, the smallest possible

granularities that can be used for functions and storage, as well as the smallest guaranteed

granularity for storage, are compared in this group. When using queries with functions,

most TSDBs have the ability to use downsampling for fitting the results when a result

over a greater period of time is wanted (e. g., an average for every day of a month and not

every millisecond). Downsampling does not mean that you can choose a period of time and

get one value for that period. For downsampling two periods must be chosen and a value

for each smaller period within the bigger period must be returned. The smaller period is

called sample interval. Granularity describes the smallest possible distance between two

timestamps (Sect. 2). When inserting data into a TSDB, the granularity of the input data can

be higher than the storage granularity that a TSDB guarantees to store safely. Some TSDB

accept data in a smaller granularity than they can store under all circumstances, which leads

to aggregated or dropped data. For TSDBs that use other DBMS for storing their data, some

of the compared aspects can be implemented manually with direct queries to the DBMS.

Such solutions are not considered.

Criteria Group 5: Interfaces and Extensibility Application Programming Interfaces

(APIs), interfaces, client libraries that are not third-party, are listed in this group. It is also

254 Andreas Bader, Oliver Kopp, Michael Falkenthal



compared if an interface for plugins exist. APIs and interfaces are used to connect to a TSDB

to execute queries. Interfaces can be non-graphical (e. g., User Interface (UI)) or graphical

(e. g., Graphical User Interface (GUI)). APIs (e. g., HTTP (using REST and JSON)) are

used by programming languages to connect to a TSDB, execute queries, and retrieve query

results. Client libraries encapsulate the connection management and the implementation of

an API to provide easier access to a TSDB for a specific programming language. Plugins are

used to extend the capabilities (e. g., to add new functions) of a TSDB. To develop plugins,

a specific interface is required.

Criteria Group 6: Support and License The availability of a stable version (Long Term

Support (LTS)) and commercial support, as well as the used license are compared in this

group. “Stable” versions are helpful to minimize maintenance time for updating a TSDB by

only releasing updates that do not support the newest functionality but instead are considered

free of bugs. If a issue in a TSDB is encountered, it needs to be solved by internal or

external developers. In a situation where defined reaction times are required, that cannot be

achieved internal, or when an internal development team is “stuck”, commercial support

is helpful. Only commercial support from the developer(s) of a TSDB are considered.

When developing or using an open source TSDB, it is important with which license the

TSDB is released. A license regulates how and by whom a product can be used and what

modifications are allowed to it, which gives more long term safeness than without having a

license.

5 Search for TSDBs

This section presents the procedure taken of searching for TSDBs. This was done by

searching on Google, in ACM Digital Library, in IEEE Xplore / Electronic Library Online

(IEL). Each result was individually considered and searched for TSDBs. The search terms

and result numbers are presented in Tab. 1. The search terms need to include “database”,

otherwise many results from time series analysis or mining are included.

Search Engine Search Term Results

Google “"time series database" OR "timeseries

database" OR "tsdb"”

233,0006

ACM Digital Library “("time series database" "timeseries

database" "tsdb")”7

59

IEEE Xplore / Electronic Library

Online (IEL)

“((("time series database") OR

"timeseries database") OR "tsdb")”8

59

Tab. 1: Search terms and result numbers for the procedure of searching for TSDBs.

As a result, 83 TSDBs were found, 50 of them are open source solutions and thus 33 are

proprietary. The most popular TSDBs are chosen from each of the introduced group. For

ranking the found TSDBs by popularity, a Google search for each TSDB was performed.

Since most TSDBs do not have any scientific papers, the amount of citations is not usable

as a ranking method. Google’s PageRank would also be usable for ranking, but then TSDBs

6 The first 100 results were considered.

7 “Any field” and “matches any” operators are used.

8 Advanced search with “Metadata Only” operator is used.

Survey and Comparison of Open Source Time Series Databases 255



that use more than one homepage (e. g., homepage and GitHub homepage) are ranked lower

than others using only one homepage. Therefore, the amount of results found by Google

was used, which also represents the amount of discussion (e. g., in news groups) about a

specific TSDB in the internet. The search terms were adjusted to fit the results as close

as possible to only match entries that are related to the TSDBs, but it is expected that the

results are not exactly precise. The TSDB name in combination with "time series" was

used as search string, e. g., “"OpenTSDB" "time series"”. For instance, when searching

for "Arctic", the word "ice" had to be excluded, because otherwise oceanic time series

data is included in the search results. Further details are described by Bader [Ba16].

The American version of Google, http://www.google.com, was used for each search. The

search was performed on September 12, 2016 between 08:11 and 09:08 AM UTC. Filtering

and automatic completion was disabled, resulted in the URL https://www.google.com/

webhp?gws_rd=cr,ssl&pws=0&hl=en&gl=us&filter=0&complete=0. The identified groups

from Sect. 2 are used to rank the found TSDBs by popularity as shown in Tab. 2.

TSDB Search Term Results

TSDB Group 1: TSDBs with a Requirement on other DBMS

OpenTSDB "OpenTSDB" "time series" 12,900

Rhombus "Rhombus" "time series" 11,700

Newts "Newts" "time series" 6,610

KairosDB "KairosDB" "time series" 3,130

BlueFlood "BlueFlood" "time series" 2,010

Gorilla "Gorilla" "time series database" -"pound" 1,520

Heroic "Heroic" "time series database" 1,490

Arctic "Arctic" "time series database" -"ice" 1,330

Hawkular "Hawkular" "time series" 1,220

Apache Chukwa "Apache Chukwa" "time series" 858

BtrDB "BtrDB" "time series" 637

tsdb: A Compressed

Database for Time Serie

"tsdb: A Compressed Database for Time

Series" "time series"

634

Energy Databus "Energy Databus" "time series" 605

Tgres "Tgres" "time series" 445

SiteWhere "SiteWhere" "time series" 436

Kairos "Kairos" "time series database" -"redis"

-"agoragames"

380

Cube "Cube" "time series" "Square, Inc." 266

SkyDB "SkyDB" "time series" 190

Chronix Server "Chronix Server" "time series" 148

MetricTank "MetricTank" "time series" 21

TSDB Group 2: TSDBs with no Requirement on any DBMS

Elasticsearch "Elasticsearch" "time series" -"heroic" 38,000

MonetDB "MonetDB" "time series" 37,200

Prometheus "Prometheus" "time series" -"IMDB"

-"Movie"

33,700

Druid "Druid" "time series" 28,900

256 Andreas Bader, Oliver Kopp, Michael Falkenthal

http://www.google.com
https://www.google.com/webhp?gws_rd=cr,ssl&pws=0&hl=en&gl=us&filter=0&complete=0
https://www.google.com/webhp?gws_rd=cr,ssl&pws=0&hl=en&gl=us&filter=0&complete=0


TSDB Search Term Results

InfluxDB "InfluxDB" "time series" 28,900

RRDtool "RRDtool" "time series" 22,600

Atlas "Atlas" "time series database" 7,960

Gnocchi "Gnocchi" "time series" 5,320

Whisper "Whisper" "graphite" "time series" 5,210

SciDB "SciDB" "time series" 4,140

BlinkDB "BlinkDB" "time series" 2,250

TSDB "TSDB" "Time Series Database" "time

series" -"OpenTSDB"

1,640

Seriesly "Seriesly" "time series" 1,330

TsTables "TsTables" "time series" 1,100

Warp 10 "Warp 10" "time series" 1,020

Akumuli "Akumuli" "time series" 741

DalmatinerDB "DalmatinerDB" "time series" 527

TimeStore "TimeStore" "time series" 443

BEMOSS "BEMOSS" "time series" 391

YAWNDB "YAWNDB" "time series" 385

Vaultaire "Vaultaire" "time series" 339

Bolt "Bolt" "time series" "Data Management for

Connected Homes"

176

GridMW "GridMW" "time series" 25

Node-tsdb "Node-tsdb" "time series" 20

NilmDB "NilmDB" "time series" 9

TSDB Group 3: RDBMS

MySQL Community

Edition

"MySQL" "time series" 309,000

PostgreSQL "PostgreSQL" "time series" 131,000

MySQL Cluster "MySQL Cluster" "time series" 23,800

TimeTravel "TimeTravel" "time series" "dbms" 743

PostgreSQL TS "PostgreSQL TS" "time series" 1

TSDB Group 4: Proprietary

Microsoft SQL Server "Microsoft SQL Server" "time series" 94,000

Oracle Database "Oracle Database" "time series" 71,500

Splunk "Splunk" "time series" 30,600

SAP HANA "SAP HANA" "time series" 22,100

Treasure Data "Treasure Data" "time series" 15,000

DataStax Enterprise "DataStax Enterprise" "time series" 12,500

FoundationDB "FoundationDB" "time series" 11,300

Riak TS "Riak TS" "time series" 9,720

TempoIQ "TempoIQ" "time series" 8,810

kdb+ "kdb+" "time series" 8,220

IBM Informix "IBM Informix" "time series" 7,580

Cityzen Data "Cityzen Data" "time series" 6,400

Sqrrl "Sqrrl" "time series" 5,460

Survey and Comparison of Open Source Time Series Databases 257



TSDB Search Term Results

Databus "Databus" "time series" 5,100

Kerf "Kerf" "time series" 3,850

Aerospike "Aerospike" "time series" 3,740

OSIsoft PI "OSIsoft PI" "time series" 3,200

Geras "Geras" "time series" 3,030

Axibase Time Series

Database

"Axibase Time Series Database" "time

series"

2,420

eXtremeDB Financial

Editio

"eXtremeDB Financial Edition" "time

series"

1,660

Prognoz Platform "Prognoz Platform" "time series" 1,440

Acunu "Acunu" "time series" 1,360

SkySpark "SkySpark" "time series" 1,240

ParStream "ParStream" "time series" 1,140

Mesap "Mesap" "time series" 741

ONETick Time-Series

Tick Database

"ONETick Time-Series Tick Database" "time

series"

503

TimeSeries.Guru "TimeSeries.Guru" "time series" 464

New Relic Insights "New Relic Insights" "time series" 233

Squwk "Squwk" "time series" 191

Polyhedra IMDB "Polyhedra IMDB" "time series" 149

TimeScape EDM+ "TimeScape EDM+" "time series" 43

PulsarTSDB "PulsarTSDB" "time series" 4

Uniformance Process

History Database (PHD)

"Uniformance Process History Database

(PHD)" "time series"

4

Tab. 2: A list of http://www.google.com results for each TSDB, grouped by the groups defined in

Sect. 2. The twelve compared TSDBs are marked.

6 Introduction of Compared Open Source TSDBs

This section provides an overview on the compared TSDBs and introduces two or more

representatives of each group. The grouping of Sect. 2 is chosen as grouping for the

presentation. In group 1 and 2, the first five most popular TSDBs are described. In group 3,

the two most popular open source RDBMS are described. We exclude group 4 as we want

to focus on open source TSDBs. A full list of all found TSDBs is provided in Sect. 2.

TSDB Group 1: TSDBs with a Requirement on other DBMS Blueflood [Ra16b] uses

Cassandra for storing its time series data. Zookeeper is optionally used to coordinate locking

on different shards while performing rollups. Elasticsearch is optionally used to search for

time series. KairosDB [Ka16] uses H2 or Cassandra as a storage for time series data. H2 is

considered as slow and only recommended for testing or development purposes [Me15].

NewTS [Ev16] uses Cassandra for storing its time series data. It consists of a server and

client, which both are written in Java. In contrast to the compared TSDBs, it is not possible

to query for tags and time range (or timestamp) at the same time. OpenTSDB [La16a]

uses HBase for storing its time series data. HBase in turn uses Zookeeper for coordination

between nodes. Rhombus [Pa16] is a Java client for Cassandra and ships a schema for

258 Andreas Bader, Oliver Kopp, Michael Falkenthal

http://www.google.com


writing “Keyspace Defintions”. “Keyspace Defintions” are a set of definitions that are used

by Rhombus to create a time series inside Cassandra. In comparison to the other compared

TSDBs, a query on one or more keys without an existing and fitting index in Cassandra

is not possible. Combining tags with Boolean algebra is poorly supported, as it is only

possible to define an index on one or more fields for combining them, which can be used as

a Boolean “AND”.

TSDB Group 2: TSDBs with no Requirement on any DBMS Druid [Ya14] uses a

RDBMS like Derby, MySQL Community Server, or PostgreSQL as metadata storage and

Zookeeper for coordination. It also needs a distributed storage like HDFS, S3, Cassandra, or

Azure for storing its data, but it also can be run with a local filesystem for testing purposes.

In contrast to the other compared TSDBs, Druid uses five different node types, each type for

a specific task. In addition, self-written functions as aggregating functions in JavaScript are

possible. Elasticsearch [El16a] is a search engine based on Apache Lucene. It stores data in

JSON files and is not primarily designed to store time series data, but it can be adopted to

store them [Ba15]. InfluxDB [In16b] is a TSDB that does not depend on any other DBMS

and uses a SQL-like language called InfluxDB Query Language (InfluxQL). Using more

than one instance as a cluster was an experimental feature, but is now only included in

InfluxEnterprise [In16c]. HA and load balancing can be achieved using InfluxDB Relay

[In16e]. MonetDB [Mo16a] is a column store that can use SQL as query language and does

not depend on any other DBMS. In comparison to the other compared TSDBs, databases

and tables are used instead of time series or any related concept. Every SQL statement is

internally translated to a MonetDB Assembly Language (MAL) statement. Prometheus

[Pr16a] is a monitoring solution based on a pull-based model, which means that Prometheus

periodically asks for data. For querying Prometheus, a language called PromQL is used.

This means that pull-based INS queries are mainly used. It can do push-based INS queries,

but then it needs a second component, called Prometheus Pushgateway [Pr16f], from which

data is regularly pulled (called “scraped”) by Prometheus. The timestamps of the pushed

data are replaced with a new timestamp at the time of scraping, which can be unwanted.

This can be avoided by setting an explicit timestamp field, which is considered not useful in

most use cases [Pr16f].

TSDB Group 3: RDBMS MySQL Community Server [Or16a] is a popular RDBMS,

which does not depend on any other DBMS. PostgreSQL [PGD16a] is another popular

RDBMS that does not depend on any other DBMS. For both RDBMS, a database and a

table as described in Sect. 2 must be created.

7 Feature Comparison of TSDBs

The TSDBs presented in Sect. 6 are compared in this section. The comparison results are

divided into six tables, one for each criteria group from Sect. 4. The results of the feature

comparison are organized regarding the criteria groups into Tab. 3 to 8. The results are

described as follows: ✓ means available, (✓) means available with restrictions, and ✗ means

not available. The contents of the table are obtained from the official documentation and

basic usage of the described TSDBs if not otherwise noted.

Survey and Comparison of Open Source Time Series Databases 259



From that comparison it can be concluded that there is are no features supported by all

TSDBs in any of the criteria groups, besides being one millisecond the smallest storage

granularity used by all TSDBs. Compared to traditional RDBMS (group 3), which provide

a standardized query language (SQL) and stable versions, only one TSDB (group 1 and 2)

provides a stable version. No TSDBs (group 1 or 2) provides a standardized query language

or interface. In return, nine of them provide HA features, nine provide scalability features,

and ten provide load balancing features. Three of them support all compared queries. It

can be concluded that there is not only one specific TSDB that fits for all criteria and

scenarios, due to the different features of the TSDBs. Druid the best choice if all criteria

besides having a stable/LTS version and commercial support must be fulfilled. In contrast to

other compared TSDBs, Druid also uses five different node types and supports self-written

functions as aggregating functions in JavaScript. Other TSDBs such as InfluxDB, MonetDB,

or one of the two RDBMS can be a better choice if stable/LTS versions or commercial

support are required.

TSDB HA Scalability Load Balancing

Group 1: TSDBs with a Requirement on NoSQL DBMS

Blueflood ✓ (✓)9 (✓)9

KairosDB (✓)9 (✓)9 (✓)9

NewTS (✓)9 (✓)9 (✓)9

OpenTSDB (✓)10 (✓)10 (✓)10

Rhombus (✓)9 (✓)9 (✓)9

Group 2: TSDBs with no Requirement on any DBMS

Druid ✓ ✓ ✓

Elasticsearch ✓ ✓ ✓

InfluxDB ✓11 ✗12 ✓11

MonetDB ✓13 (✓)14 (✓)14

Prometheus ✗15 (✓)16 (✓)17

Group 3: RDBMS

MySQL Community

Server

✗18 ✗ ✗18

PostgreSQL ✗18 ✗ ✗18

Tab. 3: Comparison of Criteria Group 1: Distribution/Clusterability.

9 Only for the Cassandra part.

10 Using a multi node HBase setup, multiple TSDs and distribution of READ and INS queries using DNS Round

Robin or external tools like Varnish Cache or HAProxy.

11 Using InfluxDB Relay [In16e].

12 Only available in InfluxEnterprise [In16c].

13 “Transaction Replication” is an experimental feature [Mo16d].

14 Available with “remote tables” [Mo16c] that use “merge tables” that cannot run INS or UPD queries [Mo16b].

15 [Pr16d].

16 Is not built in, but can be achieved by time series design or splitting time series [Kl16] or by using Federation

[Pr16e].

17 Prometheus Servers can be duplicated [Pr16d], but it is not clear if load can be distributed automatically without

manual splitting of queries, using DNS Round Robin, or Federation [Pr16e].

18 Possible to achieve for READ queries with master to slave replication, DNS Round Robin, or external tools like

Varnish Cache or HAProxy.

260 Andreas Bader, Oliver Kopp, Michael Falkenthal



TSDB INS READ SCAN AVG SUM CNT MAX MIN UPD DEL

Group 1: TSDBs with a requirement on NoSQL DBMS

Blueflood ✓ ✓19 ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗

KairosDB ✓ ✓19 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

NewTS21 ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗

OpenTSDB20 ✓ ✓19 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Rhombus21 ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓

Group 2: TSDBs with no requirement on any DBMS

Druid22 ✓ ✓19 ✓ ✓23 ✓ ✓ ✓ ✓ ✗ ✗

Elasticsearch ✓ ✓ ✓24 ✓ ✓ ✓ ✓ ✓ ✓ ✓

InfluxDB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓25 ✓

MonetDB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Prometheus ✓ ✓ ✓26 ✓ ✓ ✓ ✓ ✓ ✗ ✗

Group 3: RDBMS

MySQL

Community

Server

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PostgreSQL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Tab. 4: Comparison of Criteria Group 2: Functions.

TSDB Continuous

Calculation

Tags Long-Term

Storage

Matrix Time

Series

Group 1: TSDBs with a Requirement on NoSQL DBMS

Blueflood ✗ ✗27 ✓ ✗

KairosDB ✗ ✓ ✗ ✗

NewTS ✓ (✓)28 ✗ ✗

OpenTSDB ✗ ✓ ✗ ✗

Rhombus ✗ (✓)29 ✗ ✗

Group 2: TSDBs with no Requirement on any DBMS

Druid ✓ ✓ ✓30 ✗

Elasticsearch ✓31 ✓ ✗32 ✓33

InfluxDB ✓34 ✓ ✓35 ✗

MonetDB ✓36 ✓ ✗ ✓37

Prometheus ✓38 ✓39 ✗40 ✗

Group 3: RDBMS

MySQL Community

Server [Or16a]

✓36 ✓ ✗ ✓37

PostgreSQL ✓36 ✓ ✗ ✓37

Tab. 5: Comparison of criteria group 3: Tags, Continuous Calculation, Long-term Storage, and Matrix

Time Series.

19 Uses SCAN with the smallest possible range.

20 DEL can be substituted with a command-line tool and HBase functions.

21 Some unsupported functions can be substituted with own Cassandra Query Language (CQL) statements.

22 Missing functions can be substituted with re-ingestion through an IngestSegmentFirehose.

23 Uses SCAN and CNT.

24 Using a Range Query [El16d].

25 Possible to overwrite with INS when setting resolution to milliseconds, see [Sh14].

26 Using range vector selectors in combination with an offset modifier [Pr16h] or by using the HTTP API’s range

queries [Pr16g].

27 See [Ra15].

Survey and Comparison of Open Source Time Series Databases 261



TSDB Down-

sampling

Smallest

Sample

Interval

Smallest

Granularity

for Storage

Smallest

Guaranteed

Granularity

for Storage

Group 1: TSDBs with a Requirement on NoSQL DBMS

Blueflood ✗ ✗ 1 ms 1 ms

KairosDB ✓ 1 ms 1 ms 1 ms

NewTS ✓ 2 ms 1 ms 1 ms

OpenTSDB ✓ 1 ms 1 ms > 1 ms41

Rhombus ✗ ✗ 1 ms42 1 ms42

Group 2: TSDBs with no Requirement on any DBMS

Druid ✓ 1 ms 1 ms 1 ms

Elasticsearch ✗43 1 ms 1 ms 1 ms

InfluxDB ✓ 1 ms 1 ms 1 ms

MonetDB ✓44 1 ms44 1 ms45 1 ms45

Prometheus ✓46 1 ms 1 ms 1 ms

Group 3: RDBMS

MySQL

Community

Server

✓44 1 ms44 1 ms45 1 ms45

PostgreSQL ✓44 1 ms44 1 ms45 1 ms45

Tab. 6: Comparison of Criteria Group 4: Granularity.

28 Filtering for tag values cannot be used in combination with time ranges or aggregation functions, which results in

a limited tag functionality, see Sect. 6.

29 Boolean algebra is only poorly supported, which results in a limited tag functionality, see Sect. 6.

30 Druid uses an immediate “rollup” to store ingested data at a given granularity which helps for long-term storage

but there are no further “rollups” after the initial “rollup”. This can be used in combination with rules for data

retention and kill tasks [Ya15] to achieve long-term storage.

31 Elasticsearch’s aggregation functions can be adopted to do this [El16b].

32 Elasticsearch does optimize long-term storage while data is ingested, which can also be started manually by

curator [Ba15]. There is no possibility to run individual long term storage functions (e. g., to reduce granularity).

33 Assuming that “timestamp” can be used twice as properties with different names [Ba15].

34 See [In16d].

35 Using continuous queries for downsampling and retention policies [Be15; In16d].

36 Via triggers or views.

37 Using two timestamp columns.

38 By using recording rules [Pr16c].

39 Called “labels” in Prometheus [Pr16b].

40 Long-term storage is not yet supported by Prometheus [Pr16i].

41 OpenTSDB does not guarantee one millisecond or any other granularity to be stored safely [La16b]. Our

measurements showed that OpenTSDB can lose values when using one millisecond as granularity and does not

lose values when using 1 second as granularity.

42 Depends on the types used in keyspace definition.

43 Using Elasticsearch’s histogram aggregation function [El16c].

44 Can be implemented in SQL with a WHERE ... AND ... BETWEEN query.

45 Depends on the types used in table definition.

46 Can only be done with HTTP API’s range queries [Pr16g].

262 Andreas Bader, Oliver Kopp, Michael Falkenthal



TSDB APIs and Interfaces Client Libraries Plugins

Group 1: TSDBs with a Requirement on NoSQL DBMS

Blueflood Command-Line Interface

(CLI)47, Graphite,

HTTP(JSON), Kafka,

statsD48, UDP

✗ ✗

KairosDB CLI, Graphite,

HTTP(REST + JSON,

GUI), telnet

Java ✓

NewTS HTTP(REST + JSON,

GUI)

Java ✗

OpenTSDB Azure, CLI, HTTP(REST +

JSON, GUI), Kafka,

RabbitMQ, S3, Spritzer

✗49 ✓

Rhombus ✗ Java ✗

Group 2: TSDBs with no Requirement on any DBMS

Druid CLI, HTTP(REST + JSON,

GUI), Samza50, Spark50,

Storm50

Java50, Python, R ✓

Elasticsearch HTTP(REST+ JSON) Groovy, Java, .NET, Perl,

PHP, Python, Ruby

✓

InfluxDB Collectd51, CLI,

Graphite51,

HTTP(InfluxQL, GUI),

OpenTSDB51, UDP

✗ ✓

MonetDB CLI Java (JDBC), Mapi (C

binding), Node.js, ODBC,

Perl, PHP, Python, Ruby

✗

Prometheus CLI52, HTTP(JSON, GUI) Go, Java, Python, Ruby ✗

Group 3: RDBMS

MySQL Community

Server

CLI J, Java (JDBC), ODBC,

Python, and more

✓

PostgreSQL CLI C, C++, Java (JDBC),

ODBC, Python, Tcl, and

more 53

✓

Tab. 7: Comparison of Criteria Group 5: Interfaces and Extensibility.

47 A set of executable Java classes.

48 Experimental feature.

49 There are many clients made by other users.

50 Via Tranquility.

51 Via plugin.

52 Not for querying [Ra16a].

53 Some of them are third-party software.

Survey and Comparison of Open Source Time Series Databases 263



TSDB LTS/Stable Version Commercial

Support

License

Group 1: TSDBs with a Requirement on NoSQL DBMS

Blueflood ✗ ✗ Apache 2.0

KairosDB ✗ ✗ Apache 2.0

NewTS ✗ ✗ Apache 2.0

OpenTSDB ✗ ✗ LGPLv2.1+, GPLv3+

Rhombus ✗ ✗ MIT

Group 2: TSDBs with no Requirement on any DBMS

Druid ✗54 ✗ Apache 2.0

Elasticsearch (✓)55 ✓56 Apache 2.0

InfluxDB ✗ ✓57 MIT

MonetDB ✗ ✓58 MonetDB Public

License Version

Prometheus ✗59 ✗ Apache 2.0

Group 3: RDBMS

MySQL Community

Server

✓60 ✓61 GPLv2

PostgreSQL ✓62 ✗63 The PostgreSQL

License

Tab. 8: Comparison of Criteria Group 6: Support and License.

8 Conclusion and Outlook

This paper presented a systematic search for TSDBs resulting in 83 found TSDBs, whereby

50 are open source TSDBs. These are grouped into three groups and representatives of each

are chosen by popularity and presented more detailed. The twelve chosen representatives

are compared in 27 criteria (grouped in six criteria groups). From that comparison (Sect. 7)

it can be concluded that no TSDB supports all features from any of the criteria groups.

However, three of them are most promising candidates for our setting. When features do

not distinguish TSDBs, the performance might. Having enterprise-ready performance is a

crucial step from marked readiness to enterprise readiness. As a consequence, our next step

is a repeatable, extensible, and open source benchmarking framework for arbitrary TSDBs.

54 The “normal” releases are called “stable releases”, but are not what is considered “stable” in this paper as every

release is called “stable” after it has passed several release candidate stages.

55 After leaving development and testing phase, Elasticsearch releases are named “stable releases”. Updates for

older versions are still released for an undefined amount of time after a new “stable version” was released.

56 See [El16e].

57 See [In16a].

58 See [Mo16e].

59 The API is considered stable since version 1.0.0 [Pr16d].

60 See [Or16c].

61 See [Or16b].

62 See [PGD16c].

63 Several commercial support companies are listed on the PostgreSQL homepage, see [PGD16b].

264 Andreas Bader, Oliver Kopp, Michael Falkenthal



References

[Ac16a] Acreman, S.: Top10 Time Series Databases, 2016, url: https://blog.

dataloop.io/top10-open-source-time-series-databases.

[Ac16b] Acreman, S.: Write Performance Benchmark (Github Gist), 2016, url: https:

//gist.github.com/sacreman/b77eb561270e19ca973dd5055270fb28.

[Ba15] Barnsteiner, F.: Elasticsearch as a Time Series Data Store, 2015, url: https:

//www.elastic.co/blog/elasticsearch-as-a-time-series-data-store.

[Ba16] Bader, A.: Comparison of Time Series Databases, Diploma Thesis, Institute of

Parallel and Distributed Systems, University of Stuttgart, 2016.

[Be15] Beckett, S.: InfluxDB - archive / rollup / precision tuning feature, 2015, url:

https://github.com/influxdb/influxdb/issues/1884.

[BF12] Blumsack, S.; Fernandez, A.: Ready or not, here comes the smart grid! Energy

37/1, pp. 61Ű68, 2012.

[Ca11] Cattell, R.: Scalable SQL and NoSQL Data Stores. SIGMOD 39/4, pp. 12Ű27,

May 2011.

[DDL14] Date, C. J.; Darwen, H.; Lorentzos, N.: Time and Relational Theory. Morgan

Kaufmann, 2014.

[DMF12] Deri, L.; Mainardi, S.; Fusco, F.: tsdb: A Compressed Database for Time

Series. In: Traffic Monitoring and Analysis. Springer, 2012.

[El16a] Elasticsearch BV: Elasticsearch, 2016, url: https://www.elastic.co/de/

products/elasticsearch.

[El16b] Elasticsearch BV: Elasticsearch Reference [2.4] - Aggregations, 2016, url:

https://www.elastic.co/guide/en/elasticsearch/reference/current/

search-aggregations.html.

[El16c] Elasticsearch BV: Elasticsearch Reference [2.4] - Histogram Aggregation, 2016,

url: https://www.elastic.co/guide/en/elasticsearch/reference/

current/search-aggregations-bucket-histogram-aggregation.html.

[El16d] Elasticsearch BV: Elasticsearch Reference [2.4] - Range Query, 2016, url:

https://www.elastic.co/guide/en/elasticsearch/reference/2.3/

query-dsl-range-query.html.

[El16e] Elasticsearch BV: Elasticsearch - Subscriptions, 2016, url: https://www.

elastic.co/subscriptions.

[Ev16] Evans, E.: Newts, 2016, url: https://github.com/OpenNMS/newts; http:

//opennms.github.io/newts.

[Gr13] Grolinger, K.; Higashino, W.; Tiwari, A.; Capretz, M.: Data management

in cloud environments: NoSQL and NewSQL data stores. Journal of Cloud

Computing: Advances, Systems and Applications 2/1, 2013.

[In16a] InfluxData: InfluxData - Services, 2016, url: https://www.influxdata.com/

services/technical-support; https://www.influxdata.com/services/

consulting.

[In16b] InfluxDB: InfluxDB, 2016, url: https://influxdb.com.

Survey and Comparison of Open Source Time Series Databases 265

https://blog.dataloop.io/top10-open-source-time-series-databases
https://blog.dataloop.io/top10-open-source-time-series-databases
https://gist.github.com/sacreman/b77eb561270e19ca973dd5055270fb28
https://gist.github.com/sacreman/b77eb561270e19ca973dd5055270fb28
https://www.elastic.co/blog/elasticsearch-as-a-time-series-data-store
https://www.elastic.co/blog/elasticsearch-as-a-time-series-data-store
https://github.com/influxdb/influxdb/issues/1884
https://www.elastic.co/de/products/elasticsearch
https://www.elastic.co/de/products/elasticsearch
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-histogram-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-histogram-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/2.3/query-dsl-range-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/2.3/query-dsl-range-query.html
https://www.elastic.co/subscriptions
https://www.elastic.co/subscriptions
https://github.com/OpenNMS/newts
http://opennms.github.io/newts
http://opennms.github.io/newts
https://www.influxdata.com/services/technical-support
https://www.influxdata.com/services/technical-support
https://www.influxdata.com/services/consulting
https://www.influxdata.com/services/consulting
https://influxdb.com


[In16c] InfluxDB: InfluxDB Ű Clustering, 2016, url: https://docs.influxdata.

com/influxdb/v1.0/high_availability/clusters.

[In16d] InfluxDB: InfluxDB Ű Continuous Queries, 2016, url: https : / / docs .

influxdata.com/influxdb/v1.0/query_language/continuous_queries.

[In16e] InfluxDB: InfluxDB Relay, 2016, url: https://docs.influxdata.com/

influxdb/v1.0/high_availability/relay.

[Ka16] KairosDB Team: KairosDB, 2016, url: https://github.com/kairosdb/

kairosdb; http://kairosdb.github.io.

[Kl16] Klavsen, K.: Explaining a HA + scalable setup? (Github), 2016, url: https:

//github.com/prometheus/prometheus/issues/1500.

[Ko15] Kopp, O.; Falkenthal, M.; Hartmann, N.; Leymann, F.; Schwarz, H.; Thom-

sen, J.: Towards a Cloud-based Platform Architecture for a Decentralized

Market Agent. In: Informatik. GI e.V., 2015.

[La16a] Larsen, C.; Sigoure, B.; Kiryanov, V.; Demir, B. D.: OpenTSDB, 2016, url:

http://www.opentsdb.net.

[La16b] Larsen, C.; Sigoure, B.; Kiryanov, V.; Demir, B. D.: OpenTSDB - Writing Data

- Timestamps, 2016, url: http://opentsdb.net/docs/build/html/user_

guide/writing.html#timestamps.

[Me15] Merdanović, E.: How to install KairosDB time series database?, Feb. 2015, url:

http://www.erol.si/2015/02/how-to-install-kairosdb-timeseries-

database.

[Mo16a] MonetDB B.V.: MonetDB, 2016, url: https://www.monetdb.org/Home.

[Mo16b] MonetDB B.V.: MonetDB Ű Data Partitioning, 2016, url: https://www.

monetdb.org/Documentation/Cookbooks/SQLrecipes/DataPartitioning.

[Mo16c] MonetDB B.V.: MonetDB - Distributed Query Processing, 2016, url:

https : / / www . monetdb . org / Documentation / Cookbooks / SQLrecipes /

DistributedQuery-Processing.

[Mo16d] MonetDB B.V.: MonetDB - Transaction Replication, 2016, url: https :

/ / www . monetdb . org / Documentation / Cookbooks / SQLrecipes /

TransactionReplication.

[Mo16e] MonetDB Solutions: MonetDB Solutions Homepage, 2016, url: https :

//www.monetdbsolutions.com.

[Or16a] Oracle Corporation: MySQL Community Server, 2016, url: http://dev.

mysql.com/downloads/mysql.

[Or16b] Oracle Corporation: MySQL Services, 2016, url: http://www.mysql.com/

services.

[Or16c] Oracle Corporation: MySQL Ű Which MySQL Version and Distribution to

Install, 2016, url: https://dev.mysql.com/doc/refman/5.7/en/which-

version.html.

[PA13] Prasad, S.; Avinash, S.: Smart meter data analytics using OpenTSDB and

Hadoop. In: Innovative Smart Grid Technologies-Asia (ISGT Asia). IEEE,

2013.

266 Andreas Bader, Oliver Kopp, Michael Falkenthal

https://docs.influxdata.com/influxdb/v1.0/high_availability/clusters
https://docs.influxdata.com/influxdb/v1.0/high_availability/clusters
https://docs.influxdata.com/influxdb/v1.0/query_language/continuous_queries
https://docs.influxdata.com/influxdb/v1.0/query_language/continuous_queries
https://docs.influxdata.com/influxdb/v1.0/high_availability/relay
https://docs.influxdata.com/influxdb/v1.0/high_availability/relay
https://github.com/kairosdb/kairosdb
https://github.com/kairosdb/kairosdb
http://kairosdb.github.io
https://github.com/prometheus/prometheus/issues/1500
https://github.com/prometheus/prometheus/issues/1500
http://www.opentsdb.net
http://opentsdb.net/docs/build/html/user_guide/writing.html#timestamps
http://opentsdb.net/docs/build/html/user_guide/writing.html#timestamps
http://www.erol.si/2015/02/how-to-install-kairosdb-timeseries-database
http://www.erol.si/2015/02/how-to-install-kairosdb-timeseries-database
https://www.monetdb.org/Home
https://www.monetdb.org/Documentation/Cookbooks/SQLrecipes/DataPartitioning
https://www.monetdb.org/Documentation/Cookbooks/SQLrecipes/DataPartitioning
https://www.monetdb.org/Documentation/Cookbooks/SQLrecipes/DistributedQuery-Processing
https://www.monetdb.org/Documentation/Cookbooks/SQLrecipes/DistributedQuery-Processing
https://www.monetdb.org/Documentation/Cookbooks/SQLrecipes/TransactionReplication
https://www.monetdb.org/Documentation/Cookbooks/SQLrecipes/TransactionReplication
https://www.monetdb.org/Documentation/Cookbooks/SQLrecipes/TransactionReplication
https://www.monetdbsolutions.com
https://www.monetdbsolutions.com
http://dev.mysql.com/downloads/mysql
http://dev.mysql.com/downloads/mysql
http://www.mysql.com/services
http://www.mysql.com/services
https://dev.mysql.com/doc/refman/5.7/en/which-version.html
https://dev.mysql.com/doc/refman/5.7/en/which-version.html


[Pa16] Pardot: Rhombus, 2016, url: https://github.com/Pardot/Rhombus.

[PFA09] Pungilă, C.; Fortiş, T.-F.; Aritoni, O.: Benchmarking Database Systems for the

Requirements of Sensor Readings. IETE Technical Review 26/5, pp. 342Ű349,

2009.

[PGD16a] The PostgreSQL Global Development Group: PostgreSQL, 2016, url: https:

//www.postgresql.org.

[PGD16b] The PostgreSQL Global Development Group: PostgreSQL - Professional

Services, 2016, url: https://www.postgresql.org/support/professional_

support.

[PGD16c] The PostgreSQL Global Development Group: PostgreSQL - Versioning Policy,

2016, url: https://www.postgresql.org/support/versioning.

[Pr16a] Prometheus Authors: Prometheus, 2016, url: http://prometheus.io.

[Pr16b] Prometheus Authors: Prometheus - Comparison to Alternatives, 2016, url:

https://prometheus.io/docs/introduction/comparison.

[Pr16c] Prometheus Authors: Prometheus Ű Defining Recording Rules, 2016, url:

https://prometheus.io/docs/querying/rules/#recording-rules.

[Pr16d] Prometheus Authors: Prometheus - FAQ, 2016, url: https://prometheus.

io/docs/introduction/faq.

[Pr16e] Prometheus Authors: Prometheus Federation, 2016, url: https://prometheus.

io/docs/operating/federation.

[Pr16f] Prometheus Authors: Prometheus Pushgateway, 2016, url: https://github.

com/prometheus/pushgateway.

[Pr16g] Prometheus Authors: Prometheus - Range Queries, 2016, url: https://

prometheus.io/docs/querying/api/#range-queries.

[Pr16h] Prometheus Authors: Prometheus Ű Range Vector Selectors, 2016, url: https:

//prometheus.io/docs/querying/basics/#time-series-selectors.

[Pr16i] Prometheus Authors: Prometheus Ű Roadmap Ű Long-Term Storage, 2016,

url: https://prometheus.io/docs/introduction/roadmap/#long-term-

storage.

[Ra15] Rackspace: Blueflood - FAQ, 2015, url: https://github.com/rackerlabs/

blueflood/wiki/FAQ.

[Ra16a] Rabenstein, B.: Promtool: Add querying functionality (Github), 2016, url:

https://github.com/prometheus/prometheus/issues/1605.

[Ra16b] Rackspace: Blueflood, 2016, url: http://blueflood.io; https://github.

com/rackerlabs/blueflood/wiki.

[Sc14] Schwartz, B.: Time-Series Database Requirements, 2014, url: https://www.

xaprb.com/blog/2014/06/08/time-series-database-requirements/.

[Sc15] Schwartz, B.: How We Scale VividCortex’s Backend Systems, 2015, url: http:

//highscalability.com/blog/2015/3/30/how-we-scale-vividcortexs-

backend-systems.html.

Survey and Comparison of Open Source Time Series Databases 267

https://github.com/Pardot/Rhombus
https://www.postgresql.org
https://www.postgresql.org
https://www.postgresql.org/support/professional_support
https://www.postgresql.org/support/professional_support
https://www.postgresql.org/support/versioning
http://prometheus.io
https://prometheus.io/docs/introduction/comparison
https://prometheus.io/docs/querying/rules/#recording-rules
https://prometheus.io/docs/introduction/faq
https://prometheus.io/docs/introduction/faq
https://prometheus.io/docs/operating/federation
https://prometheus.io/docs/operating/federation
https://github.com/prometheus/pushgateway
https://github.com/prometheus/pushgateway
https://prometheus.io/docs/querying/api/#range-queries
https://prometheus.io/docs/querying/api/#range-queries
https://prometheus.io/docs/querying/basics/#time-series-selectors
https://prometheus.io/docs/querying/basics/#time-series-selectors
https://prometheus.io/docs/introduction/roadmap/#long-term-storage
https://prometheus.io/docs/introduction/roadmap/#long-term-storage
https://github.com/rackerlabs/blueflood/wiki/FAQ
https://github.com/rackerlabs/blueflood/wiki/FAQ
https://github.com/prometheus/prometheus/issues/1605
http://blueflood.io
https://github.com/rackerlabs/blueflood/wiki
https://github.com/rackerlabs/blueflood/wiki
https://www.xaprb.com/blog/2014/06/08/time-series-database-requirements/
https://www.xaprb.com/blog/2014/06/08/time-series-database-requirements/
http://highscalability.com/blog/2015/3/30/how-we-scale-vividcortexs-backend-systems.html
http://highscalability.com/blog/2015/3/30/how-we-scale-vividcortexs-backend-systems.html
http://highscalability.com/blog/2015/3/30/how-we-scale-vividcortexs-backend-systems.html


[Sh14] Shahid, J.: Updating an existing point end up inserting, Second comment., Apr.

2014, url: https://github.com/influxdb/influxdb/issues/391.

[St15] Strohbach, M. o.: Towards a Big Data Analytics Framework for IoT and Smart

City Applications. In: Modeling and Processing for Next-Generation Big-Data

Technologies. Springer, 2015.

[Te14] Ted Dunning Ellen, M. F.: Time Series Databases Ű New Ways to Store and

Acces Data. O’Reilly Media, Inc, USA, 2014.

[Th01] Theo Härder, E. R.: Datenbanksysteme : Konzepte und Techniken der Imple-

mentierung ; mit 14 Tabellen. Springer-Verlag GmbH, 2001.

[Th15] Thomsen, J. et al.: Darstellung des Konzeptes Ű DMA Decentralised Market

Agent Ű zur Bewältigung zukünftiger Herausforderungen in Verteilnetzen. In:

INFORMATIK 2015. Vol. P-246. LNI, 2015.

[Vi14] VividCortex: Building a Time-Series Database in MySQL, 2014, url: http://

de.slideshare.net/vividcortex/vividcortex-building-a-timeseries-

database-in-mysql.

[Wl12] Wlodarczyk, T.: Overview of Time Series Storage and Processing in a Cloud

Environment. In: CloudCom. 2012.

[Ya14] Yang, F. et al.: Druid: A Real-time Analytical Data Store. In: SIGMOD. 2014.

[Ya15] Yang, F. et al.: Druid Ű Retaining or Automatically Dropping Data, 2015, url:

http://druid.io/docs/latest/operations/rule-configuration.html.

[Zi15] Zimmermann, O.; Wegmann, L.; Koziolek, H.; Goldschmidt, T.: Architectural

Decision Guidance Across Projects Ű Problem Space Modeling, Decision

Backlog Management and Cloud Computing Knowledge. In: WICSA. IEEE,

May 2015.

All links were last followed on 2016-12-01.

268 Andreas Bader, Oliver Kopp, Michael Falkenthal

https://github.com/influxdb/influxdb/issues/391
http://de.slideshare.net/vividcortex/vividcortex-building-a-timeseries-database-in-mysql
http://de.slideshare.net/vividcortex/vividcortex-building-a-timeseries-database-in-mysql
http://de.slideshare.net/vividcortex/vividcortex-building-a-timeseries-database-in-mysql
http://druid.io/docs/latest/operations/rule-configuration.html

